

Applicability of object-based storage
devices in parallel file systems

Pete Wyckoff

Ohio Supercomputer Center

HECIWG 21 aug 06

pw@osc.edu

Vision

● Processors faster, disk densities up, but IO
rates flat

● Leverage intelligent peripherals to improve
performance

● OSDs offer higher-level semantic interface
● Secure, direct access of storage by clients
● Our work

– Examine role of OSDs in parallel file systems
– Analyze trade-offs of using OSDs for various

aspects of parallel FSes
– Develop extensions required for efficient use of

OSDs in HPC parallel environments

OSD Background

● T10 specification
● Prototypes
● Simulators

● Pure target
● Security model

Mapping Data to Objects

● Block-based "objects" are 512 bytes
● OSD objects could be files
● For striped files, object is stripe, or stripe set?
● Collection feature allows grouping objects

– flush, remove, list, access control
● Delegating object creation to clients

– maybe using collection container
● When to create objects on create?

– lazy, preallocate

Metadata

● OSDs store attributes with objects
● How do parallel FS attributes map to these?

– uid, gid, perm, [acm]time, type
● mtime of object vs mtime of file

– size, link target, dfile count, dirent count, dir hint
– xattrs
– metafile contents (datafile handles, distribution)
– directories themselves?

● Managing collective behavior
– object allocation, fsck, rebalancing
– use OSDs for metadata management too?

● Select objects by attribute
– data-introspective extensions

Other Topics

● Transport
– choice of RDMA direction based on usage intent
– link flow control and object information
– drive prefetch, write-behind by object info

● Caching
– attributes can be used to build DLM
– versioning FS
– dial-a-consistency approach

● Reliability
– manage disk cache explicitly
– auto-checksum or auto-duplicate some objects

Implementation

● All in context of PVFS
● Open source, LGPL license, release often
● Maximize benefit to other researchers and

production implementations
● Particular components

– specific client-side transport protocol for OSDs
– separate out "meta" and "data" operations
– metaserver may need to initiate "data" operations

● OSD implementations
– iSCSI initiatiors (IBM user, stock kernel)
– iSCSI target (IET kernel), stgt (user/kernel)
– OSD initiator (IBM, Intel)
– OSD target (Intel, IBM (no source))

Protocol Stacks

Conclusion

● Enable higher semantic interface to storage
● Avoid middle-box interference on data path
● Understand roles of clients, metadata servers,

IO servers, lock servers, etc in parallel FSes

● Cooperation welcomed

